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Abstract
The transport properties of electrons in a normal-metal–quantum-dot–
superconductor system are investigated by the use of an equivalent single-
particle multichannel network that takes into account the interaction of the dot
and the pairing potential on the superconducting side. The transport properties
depend on the interplay between the Coulomb blockade effect and Andreev
reflection. It is found that at finite temperatures the conductance versus the gate
voltage exhibits a series of peaks, due to the Andreev reflection, depending on
the resonances controlled by the charging energy and level spacing of the dot.
A detailed analysis of the physical origin of resonant peaks of different kinds
is given.

1. Introduction

Owing to the advances in the nanotechnology, it is possible to investigate nanostructures in
a tunable manner. Recently there has been much interest in transport properties of electrons
in mesoscopic systems. In particular, those mesoscopic systems that consist of both normal
parts and superconducting parts have been investigated intensively following the observation of
several new phenomena related to the Andreev reflection [1–3]. More recently, several specific
systems that include quantum dots as a part have introduced the possibility of observing new
effects associated with the interplay between the superconducting pairing and the quantum-size
effects of the dots. Due to the electron–electron interaction, the quantum dot (QD) can exhibit
characteristic phenomena, e.g., the Coulomb blockade and Kondo effects. The tunnelling
through a normal QD connected to superconducting leads, such as in superconductor–quantum-
dot–superconductor (SDS) and normal-metal–quantum-dot–superconductor (NDS) structures,
is found to possess special properties. As regards the NDS structures, Beenakker [4] presented
a general multichannel S-matrix description and predicted resonant Andreev tunnelling for a
single-level QD at the zero-bias limit. Later, Claughton et al [5] extended this theory to the
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finite-bias case and found that differential conductance resonances are strongly suppressed
in the weak-coupling limit. The Kondo anomaly in I–V curves in the presence of the
Andreev reflection in the NDS system was discussed in [6,7]. The Andreev reflection in NDS
systems with QD having multiple discrete levels was discussed using of a free-QD model, and
resonant peaks of different kinds in the current versus gate voltage were discovered [8]. Very
recently, Cuevas et al [9] investigated the transport properties of a QD coupled to a normal
and a superconducting lead by means of the single-level Anderson model. Dolby et al [10]
studied the effect of Coulomb interactions in the normal region of a normal–superconducting
mesoscopic structure. In [11] and [12], Avishai et al calculated the I–V characteristics of
electron tunnelling through an Anderson impurity between two superconductors and between
a superconductor and a normal metal.

In this paper we investigate transport properties of electrons in the NDS system by the use
of the equivalent single-particle multichannel network that takes into account the interaction
on the dot and the pairing potential in the superconducting side. The present work, in contrast
to [8] where the intradot Coulomb interactions are neglected and also [6,7,9,11] and [12] where
only a single level of the QD is considered, studies the motion of electrons on the basis of
many-body wavefunctions including all interacting electrons on the QD and one quasiparticle
which tunnels through the dot. This method has been previously used to investigate the in-
phase features of the transport of electrons through a dot in the Coulomb blockade regime with
normal leads [13]. Here we assume that the QD has discrete multiple levels and the intradot
Coulomb interaction is strong. We describe the pairing potential in the superconducting lead
by the use of Bogoliubov–de Gennes Hamiltonian. The new results of the present study are as
follows:

(i) A general formulation for the conductance of NDS systems is presented, taking into
account the multilevel structure, the occupation status, the Coulomb interactions, the
spin-flip scattering, and the Andreev reflection.

(ii) The dependence of the conductance, or the differential conductance, on the gate voltage,
on the bias, and on the temperature, resulting from the combined effects of the physical
ingredients mentioned above, is obtained.

(iii) It is found that at finite temperatures the conductance versus the gate voltage exhibits a
series of peaks due to the Andreev reflection, depending on resonances controlled by the
charging energy and level spacing of the dot.

(iv) The characteristics and the physical origin of resonant peaks of different kinds are analysed
in detail.

The paper is organized as follows: in section 2 we describe the model and basic formalism;
we present the calculated results in section 3; in the final section we give a brief summary and
discussion.

2. The model and the basic formalism

The Hamiltonian of the system can be written as

H = HN + HD + HS + HT (1)

whereHN , HD , HS , andHS represent the normal wire, the QD, the superconducting wire, and
the tunnelling between the dot and the leads, respectively. In a tight-binding scheme they can
be written as
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HN = t0
∑

σ,m<−1

(c†
m,σ cm+1,σ + H.c.) +

∑
σ,m�−1

ε0c
†
m,σ cm,σ , (2)

HD =
N∑

σ,i=1

(ξi + Vg)d
†
i,σ di,σ +

1

2C

(
e

N∑
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∑
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†
i,σ di,σ

)2

, (3)

HS = t0
∑
σ,m�1

(c†
m,σ cm+1,σ + H.c.) +

∑
σ,m�1

ε0c
†
m,σ cm,σ −

∑
m�1

(�c
†
m,↑c

†
m,↓ + �∗cm,↓cm,↑) (4)

HT =
N∑

σ,i=1

(tLc
†
−1,σ di,σ + tRc†

1,σ di,σ + H.c.) (5)

where: cm,σ and di,σ are annihilation operators for electrons in the leads and on the dot, with
σ , m, and i being indices of spin, site, and level, respectively; tL (tR) is the matrix for the
hopping between the left (right) lead and the dot which is assumed to be independent of the dot
levels for simplicity; andN is the number of dot levels. The electron states on the close dot are
characterized by the level energy ξi , dot potential Vg induced by the gate voltage, and charging
energy of an effective capacitance C. In the left lead the motion of electrons is described by
the site energy ε0 and hopping integral t0. In the right lead, � is the pairing potential of the
Bogoliubov–de Gennes Hamiltonian for the superconductivity. In the following we set the site
energy in the leads as the energy zero and choose t0 as the energy unit.

Due to the superconductivity in the right lead, not only electrons, but also holes in the leads
contribute to the conductance of the system. Both of them are considered as quasiparticles in
the Fermi sea. We suppose that the dot has M electrons occupying levels below the chemical
potential before and after tunnelling. Including one electron or one hole on the leads, there are
in total M ± 1 electrons in relevant many-body states. To solve the Schrödinger equation we
use the following many-body wavefunctions as the basis [13]:

�
(e)
m,σ,D = c†

mσ

( ∏
{iσ ′}∈D

d
†
iσ ′

)
|F 〉, �D(+) =

( ∏
{iσ ′}∈D(+)

d
†
iσ ′

)
|F 〉, (6)

�
(h)
m,σ,D = cmσ

( ∏
{iσ ′}∈D

d
†
iσ ′

)
|F 〉, �D(−) =

( ∏
{iσ ′}∈D(−)

d
†
iσ ′

)
|F 〉, (7)

where D, D(+), and D(−) denote sets of M , M + 1, and M − 1 states on the dot, respectively,
and |F 〉 represents the Fermi sea in the leads. A wavefunction that describes the tunnelling
process can be written as a linear combination of these basis functions:

� =
∑
m,σ

∑
D

p
(e)
m,σ,D�

(e)
m,σ,D +

∑
D(+)

qD(+)�D(+) +
∑
m,σ

∑
D

p
(h)
m,σ,D�

(h)
m,σ,D +

∑
D(+)

qD(−)�D(−) . (8)

By applying the Hamiltonian to � we obtain the following Schrödinger equations for the
coefficients p(e)m,σ,D , p(h)m,σ,D , qD(+) , and qD(−) :

χDp
(e,h)
m,σ,D ± t0(p

(e,h)
m+1,σ,D + p(e,h)m−1,σ,D) = Ep

(e,h)
m,σ,D, (m < −1), (9)

χDp
(e,h)
−1,σ,D ± t0p

(e,h)
−2,σ,D ±

∑
i

tLqD(+,−)(i,σ ) = Ep
(e,h)
−1,σ,D, (10)

χD(+,−)(i,σ )qD(+,−)(i,σ ) ± tL∗p(e,h)−1,σ,D ± tR∗p(e,h)1,σ,D = EqD(+,−)(i,σ ), (11)

χDp
(e)
1,σ,D + t0p

(e)
2,σ,D +

∑
i

tRqD(+)(i,σ ) + �p(h)1,−σ,D = Ep
(e)
1,σ,D, (12)

χDp
(h)
1,σ,D − t0p

(h)
2,σ,D −

∑
i

tRqD(−)(i,σ ) + �∗p(e)1,−σ,D = Ep
(h)
1,σ,D, (13)
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Figure 1. Illustrations of the equivalent single-particle networks for electron tunnelling through
a NDS system. Four energy levels on the dots are included. The lead is described with a one-
dimensional tight-binding lattice. There are five electrons on the dot for (a) and (b), four electrons
for (c), and one electron for (d), before and after tunnelling. The states on the dot are shown in
circles. The position and spin of the tunnelling electron are represented by the lattice sites and ↑
or ↓ signs, respectively. c† (c) stands for electron (hole) channels.

χDp
(e)
m,σ,D + t0(p

(e)
m+1,σ,D + p(e)m−1,σ,D) + �p(h)m,σ,D = Ep

(e)
m,σ,D, (m > 1), (14)

χDp
(h)
m,σ,D − t0(p

(h)
m+1,σ,D + p(h)m−1,σ,D) + �∗p(e)m,−σ,D = Ep

(h)
m,σ,D, (m > 1), (15)

where E is the total energy of the M + 1 particles, D(+)(i, σ ) (D(−)(i, σ )) is the set of dot
states obtained fromD by adding (subtracting) state {iσ }, the sum on i is over all possible sets
D(+)(i, σ ) (D(−)(i, σ )), and

χD = e2M2

2C
+ MVg +

∑
i∈D

ξi (16)

χD(+,−)(i,σ ) = e2(M ± 1)2

2C
+ (M ± 1)Vg +

∑
i∈D(+,−)(i,σ )

ξi . (17)

In the following calculation we will include four discrete levels with equal level spacing
for the dot. From these equations the problem of the transmission through the NDS system
reduces to a single-particle picture of a multichannel network. In figures 1(a) and (b) we
partially show possible networks for a dot with five (an odd number of) electrons before and
after tunnelling. The symbols c† and c denote the electron and hole channels in the leads,
respectively. The states of the dot are represented by the occupation statuses of the levels
shown in the circles. To keep the current steady, the outgoing channels should have the same
status of level occupation as the incoming channel. However, the spin of the electron on the
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dot may be flipped. Figure 1(b) shows the spin-flip process in the tunnelling. In figure 1(c)
we display the tunnelling process in the case of an even number of electrons on a dot. In
the intermediate states the tunnelling electron goes to empty levels, while the hole from the
superconducting side goes to an occupied level, creating a Cooper pair on the superconducting
lead. In figure 1(d) we show the tunnelling process with only one electron on the dot. There
are other independent networks which are not shown.

If an electronic plane wave with unit amplitude is incident from the left (normal) lead, in
both electron and hole channels of the left lead there are reflected waves, and the coefficients
p
(e,h)
m,σ,D can be written as

p
(e)
m,σ,D = eik(e)m + r(e)σ,De−ik(e)m, for m < 0, (18)

p
(h)
m,σ,D = r

(h)
σ,De−ik(h)m, for m < 0, (19)

where r
e,h
σ,D and k(e,h) are, respectively, the reflection amplitude and wavevector in the

corresponding channel. The wavevectors satisfy ε = 2t0 cos k(e) + ε0 − eVb and ε =
−2t0 cos(−k(h)) − ε0 + eVb, where ε = E − χD is the energy of the tunnelling particle
and Vb is the bias voltage. We can calculate the reflection amplitudes r(e,h)σ,D for all channels in
network l by solving the above Schrödinger equations. By virtue of current conservation, at
low temperature and bias voltage the current can be evaluated in the normal region and can be
expressed as [14, 15]

I (Vb) = 2e2

h

∫ ∞

−∞
dε

∑
l

[f0(ε − eVb)− f0(ε)]Fl(T )[N
(e)
l − Tr(R̂(e)†

l R̂
(e)
l ) + Tr(R̂(h)†

l R̂
(h)
l )]

(20)

where R̂(e)
l and R̂(h)

l are reflection matrices for, respectively, electron and hole channels on the
normal side of network l, N(e)

l is the number of electron channels in network l, f0(ε, T ) is the
Fermi distribution of electrons in the normal lead, and Fl(T ) is the thermal probability of the
dot state in network l:

Fl(T ) = 1

N exp

(
− χDl

kBT

)
with N =

∑
{D}

exp

(
− χD

kBT

)
, (21)

with χDl
being energy of the dot state corresponding to network l. The contribution of Andreev

reflection to the conductance is included by R̂(h)
l in equation (20). By sweeping the gate voltage

Vg , the occupation number of the dot is sequentially changed, corresponding to a series of
resonant conductance peaks. The spacing between peaks is determined by both the charging
energy and the level spacing.

3. Results and discussion

On the basis of the set of Schrödinger equations, we carry out numerical calculations of the
transport properties of the NDS system. In the case of |ε| < �, only the Andreev reflection
makes a contribution to the current. Figure 2(a) presents the current I as a function of the gate
voltage Vg at small bias voltage. A series of peaks emerge in the I–Vg curve. In the regime of
Coulomb blockade, these peaks correspond to resonances with different numbers of electrons
on the dot. There are two types of peak, A-type and B-type, present alternately in the series,
as shown in the figure. The latter is more strongly dependent on the bias voltage. A-type
peaks originate from the Andreev reflection in the case with an odd number of electrons on
the dot, corresponding to the processes shown in figures 1(a) and (b). The B-type peaks result
from resonances in the case of an even number of electrons on the dot, as shown in figure 1(c).
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Figure 2. Current I as a function of gate voltage Vg . The energy unit is t0. The parameters are
chosen as � = 0.15, tL = tR = 0.1, kBT = 0.005, and the level spacing is 0.04. For (a) and
(b) the charging energy e2/2C = 0.015. For (c) e2/2C = 0.

In this case the tunnelling electron goes to an empty level of the dot, then creates a Cooper pair
on the superconducting side by Andreev reflecting a hole in an occupied level of the dot. At
low temperatures the main contributions to the current come from the intermediate dot states
situated in energy window [εF − eVb, εF ] with εF the Fermi energy in the lead, as can be seen
from equation (20). For the A-type peaks, only one level on the dot is involved in the resonant
tunnelling: the electron from the normal lead goes to the singly occupied level of the dot to
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Figure 3. Linear conductanceG versus gate voltage Vg at different temperatures. The temperature
unit is t0/kB . The parameters are chosen as � = 0.15, tL = tR = 0.1, e2/2C = 0.015, and the
level spacing is 0.04.

form a Cooper pair entering the superconducting lead by reflecting a hole to the normal lead,
leaving this level remaining singly occupied. Thus, the A-type resonant tunnelling can occur
at very low temperatures and low bias, provided that the Fermi level of the lead coincides
with a level of the dot which is singly occupied. In contrast, for the B-type tunnelling at least
two levels of the dot should be involved: one is originally empty—for accommodating the
electron from the normal lead—and the other is doubly occupied—for receiving a hole from
the superconducting lead in the Andreev reflection. As a result, the B-type tunnelling can
occur only at finite temperatures, or at zero temperature but with a finite bias to form an energy
window including these two levels. This is why the B-type peaks are more strongly dependent
on the value of the bias. The A-type peaks (corresponding to even occupations of the dot)
and B-type peaks (odd occupations) appear alternately when varying the gate voltage, and the
spacing between adjacent A-type and B-type peaks is determined by both the charging energy
and the level spacing. In the case with thermal energy and bias less than the level spacing or
the charging energy, each of these peaks corresponds to one occupation status (including the
occupation number and the levels used for the intermediate states). However, if the temperature
is higher or the bias is comparable to the level spacing or the charging energy, a new type of
peak may appear due to contributions from states with different occupation number or different
levels used. This is demonstrated by the C-type peaks in figure 2(b) which appear between
A-type and B-type peaks at relatively larger bias voltage. The complicated peak structure
reflects the coexistence of two parameters (charging energy and level spacing) that control the
resonant tunnelling. For comparison, the I–Vg curves of the non-interacting case are shown
in figure 2(c). In this case the peak structure is much simpler even for relatively large bias.
The A-type and B-type peaks merge together due to the spin degeneracy of the dot levels that
erases the difference in energy of intermediate states between even and odd occupation. At
relatively larger bias the C-type peaks also appear due to the tunnelling through different dot
levels.
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Figure 4. (a) The linear conductance as a function of gate voltage at different U0. (b) The current
versus U0 at eVb = 0.01. The other parameters are � = 0.15, tL = tR = 0.1, kBT = 0.005, and
the level spacing is 0.04.

We also calculate the linear conductance as a function of gate voltage. In figure 3 we plot
the linear conductance versus gate voltage at different temperatures. It can be seen that the
B-type conductance peaks are strongly suppressed at low temperatures and the C-type peaks
disappear, since at zero bias the tunnelling process involving more than one level can occur
only via the thermal excitations. At very low temperature (the solid curve), each of the A-type
peaks is split into two peaks. This is due to the difference in the resonant energy between the
non-spin-flip (figure 1(a)) and spin-flip (figure 1(b)) tunnelling processes in the case of odd
occupations of the dot. When the temperature increases this difference is erased by the thermal
excitations and the two peaks merge together.

Figure 4(a) shows the conductance versus gate voltage for different U0 (≡e2/2C). With
increasing U0, the peak structure becomes more complicated. This is partially due to the
separation of the A-type and B-type peaks which merge together at zero U0, and partially due
to the splitting of the A-type peaks caused by the many-body effect on the dot. In figure 4(b)
we plot the current as a function of charging energy e2/2C at different gate voltages Vg . As
one can see, despite the oscillations from sweeping through the resonances, the increase of
the charging energy leads to the ceasing of the Andreev transport (Coulomb blockade). It has
been shown that the electron–electron interaction can cause suppression of Andreev reflection
due to the orthogonality catastrophe [16, 17].

Figures 5(a) and (b) show the differential conductance as a function of the bias voltage for
different temperatures at Vg = −0.18 and −0.02, respectively. As expected, in both figures
the peak structure is smoothed by increasing the temperature due to the thermal excitations.
The number and positions of peaks are different in figures 5(a) and (b). In the case of
Vg = −0.18, there are four electrons on the dot occupying two levels, as shown in figure 1(c).
For Vg = −0.02, there is only one electron on the dot and the process of Andreev reflection is
illustrated in figure 1(d). The number of intermediate states in figure 1(d) is much larger than
that of 1(c). This causes denser peaks in figure 5(b).
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Figure 5. The differential conductance versus eVb at different temperatures. (a) and (b) correspond
to gate voltages of Vg = −0.18 and −0.02, respectively. The other parameters are chosen as
� = 0.15, tL = tR = 0.1, e2/2C = 0.015, and the level spacing is 0.04.
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Figure 6. (a) The total probability of Andreev reflection R as a function of electron energy ε.
(b) The magnitude R (solid curve) and phase α (dashed curve) of Andreev reflection in the hole
channel of figure 1(c) as functions of Vg . The parameters are e2/2C = 0.015, tL = tR = 0.1,
� = 0.15.

In figure 6(a) we display the dependence of the total tunnelling probability on electron
energy ε. The peaks in the curves reflect the resonances ξD(+,−)(i,σ ) for Andreev reflection
through the dot. The peak number in the case of Vg = −0.08 is larger than that in the
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case of Vg = −0.18, owing to the larger number of resonance levels. Note that in the
case of symmetric barriers (tL = tR), the probability of the resonance Andreev reflection
is of the order of unity, much larger than that of the non-resonant Andreev reflection of
the normal–superconducting junctions with a single barrier. This is consistent with results
obtained in [8]. It is also interesting to investigate the variation of the phase in the Andreev
reflection. In figure 6(b) we show the magnitude and phase of the Andreev reflection
amplitude r(h), corresponding to a network with one hole channel shown in figure 1(c), as
functions of the dot potential Vg . As one can see, the phase changes abruptly by π at
every resonant peak of Andreev reflection, and it varies continuously between the resonant
peaks. Thus, the phase of the Andreev reflection can be controlled by the gate voltage in
such a structure.

4. Summary

We have investigated the electronic transport through a QD coupled to normal and
superconducting leads on either side by using the equivalent multichannel network method.
We consider both the multiple levels and the Coulomb interaction on the dot. In this system
the tunnelling current measured in the normal lead arises mainly from contributions from the
Andreev reflection. The results obtained show that

(i) both the intensity and the phase of the Andreev reflection are controlled by the resonant
tunnelling through the dot which can be tuned by varying the gate voltage;

(ii) for even occupation of the dot the resonant tunnelling involves two dot levels, one for the
electron and the other for the hole;

(iii) the tunnelling spectrum depends on both Coulomb interaction and level spacing of the
dot; their combined effect leads to complicated structures of peaks;

(iv) the magnitude of the resonant Andreev reflection in this system may be much larger than
that in the usual normal–superconducting junction with a single barrier.

In this paper the resonant conditions for resonant Andreev reflection are discussed. We have
also shown that the strong electron–electron interactions suppress the conductance of the
system.
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